“A rose by any other name…”

In my last post, “It seems the sky is falling…”, I talked about the Russian meteor event and flyby of asteroid 2012 DA14, both of which occurred on Friday, February 15, 2013. In that post I talked a lot about the various terms of things in space that can enter the Earth’s atmosphere and ultimately cause an “impact”. But there are a lot of terms and some of them have very minute differences, so I figured I’d devote a post just to explaining these terms. Specifically, I’d like to look at a few differences.

“Meteoroid” vs. “Meteor” vs. “Meteorite”

These words all share the same root, the Greek word meteōros, meaning “suspended in the air”, and look very similar, but they do mean different things. To start off, let’s think of a small piece of rock in space. We don’t care what kind of rock it is or where it comes from, let’s just call it a small rock. Now, let’s say that small rock is happily zipping around the solar system, obeying the law of gravity as it orbits the Sun, when suddenly it gets too close to Earth and the gravitational pull of the planet sends tugs it out of its original orbit and towards our planet. Now, that small piece of rock that’s on it’s way into the Earth’s atmosphere, that’s a “meteoroid”. Once that “meteoroid” hits the Earth’s atmosphere travelling at high speed it’s going to heat up and leave a trail in the sky. That heating up and the resulting streak in the sky is a “meteor”- commonly referred as a “shooting star”. If you get a whole bunch of associated “meteoroids”, say a whole bunch of little pieces of rock left over from an asteroid or comet that passed by, that enter the atmosphere at the same time, creating meteors, that’s called a “meteor shower”. So, the “meteoroid” is the small rock that causes streak of light and the “meteor” is the actual visible streak we see. Now as that “meteoroid” is hurtling through the atmosphere and heating up, it can literally blow up. That huge flash that’s caused by the disintegration of the “meteoroid” is known as a “fireball” and really bright “fireballs” are known as “bolides”. That huge flash of light is usually associated with a large deposit of energy into the atmosphere that causes a pressure wave like to ones seen in Tunguska and Chelyabinsk.

A meteor or “shooting star” streaking across the sky is really a piece of debris burning up in the atmosphere. Credit: Wikipedia

The solar system is full of little pieces of debris moving really fast and without the atmosphere that debris would constantly be pummeling the surface of the planet…and us. So the atmosphere protects us. Things are constantly entering the atmosphere and burning up, creating “meteors”. Most of these “meteoroids” are about the size of a pebble- much to small to reach the Earth’s surface. But it does happen occasionally. When large objects enter the atmosphere and make it down to Earth, that remaining piece of rock that reaches the ground is known as a “meteorite”. So yeah, if you’re one your way to work in the morning and see that there’s a huge piece of rock sitting on your car, that’s probably a “meteorite”…or there’s someone who really doesn’t like you. Don’t worry though, as Bad Astronomer Phil Plait writes, only one person has ever been hit by a meteorite and that occurred in Alabama in 1954.

This Canyon Diablo meteorite was part of the 50-meter asteroid that formed the mile-wide Meteor Crater in Arizona. Credit: Wikipedia

Now, not all “meteors” and “meteorites” are caused by natural objects in space. Think about all of the satellites and “space junk” orbiting the Earth. If any of that space junk were to re-enter the atmosphere it would burn up, just like a space rock, and cause a meteor. And another, less appealing example is astronaut waste. On the now-retired Space Shuttles, the urine was expelled out into the upper atmosphere to burn up/evaporate– this actually created a visible glow. Solid waste on the Space Shuttles was collected and removed once the Shuttle returned to the ground, unfortunately that’s not really an option on the International Space Station (ISS), where astronaut waste is stored, then loaded into a disposable space probe and ejected out to burn up in the atmosphere. So yeah, next time you wish on a shooting star, just think that it might actually be astronaut poop.

“Comet” vs. “Asteroid”

Okay so now we’ve talked about the differences between the things that enter the atmosphere. But beyond man-made sources, where do those “meteoroids” come from? Many of them are from rocky, metallic objects in the solar system known as “asteroids”. What are asteroids? According to NASA:

“Most asteroids are made of rock, but some are composed of metal, mostly nickel and iron. They range in size from small boulders to objects that are hundreds of miles in diameter. A small portion of the asteroid population may be burned-out comets whose ices have evaporated away and been blown off into space. Almost all asteroids are part of the Main Asteroid Belt, with orbits in the vast region of space between Mars and Jupiter.”

Most asteroids are actually leftover bits and pieces of planets that weren’t able to coalesce under gravity. As the NASA page describes, most asteroids live in the Asteroid Belt that orbits between Mars and Jupiter. However, as those asteroids travel around the Sun, they can bump into each other, causing a rogue asteroid to leave the Asteroid Belt and traverse the solar system. Sometimes those asteroids fall into the Sun, sometimes they collide with Earth or other planets.

Vesta, one of the largest asteroids in the solar system, was recently studied by NASA’s Dawn mission. Dawn was the first spacecraft ever to go into orbit around an asteroid. Credit: Wikipedia

So what’s the difference between an asteroid and a comet? A “comet” is an icy body that lives out in the farthest regions of the solar system. There is belief by scientists that many comets primarily live in a region at the edge of the solar system known as the Oort Cloud. As these icy bodies come into the inner solar system and approach the Sun, they increase in brightness as the heat from the Sun causes the ice to melt and reflect sunlight. Comets are generally much easier to view than asteroids due to the high reflectivity of the water vapor it releases as they travel through the inner solar system. Generally comets that pass by the orbit of the Earth leave a debris trail in their wake. When the Earth’s orbit takes it through one of those debris trails, it causes a meteor shower.

Comet West made a spectacular show for skywatchers in March 1976. This image shows a great example of the two types of tails that comets often have. One tail is caused by water vapor coming off from sunlight and the other is ionization caused by the solar wind of particles streaming off of the Sun. Credit: APOD/NASA

So comets are mostly icy bodies that live out at the very edge of the solar system and asteroids are rocky, metallic bodies that generally live in the Asteroid Belt in the region between Mars and Jupiter.

So what did we learn?

So let’s review in this handy table made by the great folks at NASA’s Near-Earth Object Program:

Asteroid A relatively small, inactive, rocky body orbiting the Sun.
Comet A relatively small, at times active, object whose ices can vaporize in sunlight forming an atmosphere (coma) of dust and gas and, sometimes, a tail of dust and/or gas.
Meteoroid A small particle from a comet or asteroid orbiting the Sun.
Meteor The light phenomena which results when a meteoroid enters the Earth’s atmosphere and vaporizes; a shooting star.
Meteorite A meteoroid that survives its passage through the Earth’s atmosphere and lands upon the Earth’s surface.

It seems the sky is falling…

Imagine driving in your car on a lovely Friday morning and seeing a flaming ball of death streaking across the sky and coming, as best you can tell, right at you.

This view from a Russian dashboard camera shows a terrifying view of the fireball as the meteoroid entered the atmosphere and hurtled over the city of Chelyabinsk. Credit: Discovery News

That’s what terrified citizens in the lovely Russian city of Chelyabinsk experienced on the morning of Friday, February 15. The multitude of videos and photos of this meteor are simply horrifying since many of them give the impression that this huge chunk of flaming interplanetary death is about to smash right into the camera. Not only did this fireball make a scary visual impression, but it packed a very literal punch as well. As the meteoroid hurtled through the atmosphere at 40,000 mph, the heat and pressure it felt caused it to break apart with a huge amount of energy, the equivalent of 470 kilotons of TNT (or 30-40 times the power of the atomic bomb dropped on Hiroshima). The deposition of that huge amount of energy into the sky caused a pressure wave that blasted the city. Over 1,000 people were injured by the blast, mostly due to cuts and scrapes from glass as windows shattered. Scientists have now come to the conclusion that the initial object was only 17 meters wide– that’s about the size of a tractor trailer. That’s pretty small cosmically speaking. Imagine the damage that could have been inflicted if something larger had hit the atmosphere. The last time a meteor had significant large-scale impact was in 1908, again in Russia. This impact, known as the “Tunguska event“, is the largest impact ever recorded- 20-30 times larger than the one that happened this month. This meteoroid, which is estimated to have been about 100 meters wide (the size of a football field), blew up in the air and released 10-15 megatons of energy, leveling 830 square miles of trees. Witnesses to the event said that the heat and pressure from the explosion made their skin feel like it was on fire.

The 1908 Tunguska event, the largest impact near or on Earth ever recorded, leveled trees over 830 square miles. Credit: nightsky.org

Luckily the 2013 Russian meteor was much smaller, so windows got knocked out but buildings weren’t leveled. The object was actually so small that astronomers didn’t even see it coming. NASA has a whole division of people who track objects that could potentially come close to Earth, it’s known as the Near-Earth Object Program. Unfortunately, for scientists to be able to see an object it needs to be large enough to reflect an observable amount of light. That didn’t happen here.

The meteor also came as a bit of a shock since scientists were so focused on another Near-Earth Object called 2012 DA14. This 45-meter wide asteroid was scheduled for a flyby of Earth on the same day, February 15. This relatively small piece of space rock flew closer to the Earth than any other celestial body. It was 17,200 miles away at its closest approach, that’s closer than satellites in geosynchronous orbit and much, much closer than the Moon. Although scientists were certain that DA14 wouldn’t impact the Earth, they were very excited to use the close flyby as an opportunity to study the asteroid.

This collage of 72 individual radar-generated images of asteroid 2012 DA14 was created using data from NASA’s 230-foot Deep Space Network antenna at Goldstone, CA. Credit: NASA

Of course it was ironic that after weeks of assuring the public that there was no threat of an impact from DA14 another huge impact happened in Russia the same day. Scientists from NASA’s Meteoroid Environment Office concluded that the Russian meteor and DA14 were totally unrelated, having come from two very distinct trajectories/orbits. This means it was a huge cosmic coincidence that they just happened to occur on the same day…weird.

This plot of the orbits of the Russian meteor and asteroid 2012 DA14 show that the two bodies came from very different parts of the solar system and were unrelated. The Russian meteoroid most likely originated from the Asteroid Belt out past Mars. Credit: NASA/Space.com

%d bloggers like this: