Curiosity did not kill the cat…

So as I’m sure you’ve all heard, NASA’s Curiosity rover successfully landed on the surface of Mars in the early hours of yesterday morning (east coast time). In an earlier post, I relayed the video by NASA of the harrowing entry that Curiosity needed to go through to reach the Martian surface safely and highlighted that the entire elaborate landing procedure was 100% automated since it takes double the time the landing would take to occur for information to be relayed back to Earth. And all the taxings of a mission so complicated, despite all the finesse and delicacy needed to execute such a bold attempt, and despite all the things that could go wrong, the scientists and engineers at NASA succeeded. Honestly, if you watch the 7 Minutes of Terror video, realize that scientists built and programmed a machine that could do that all automatically, millions of miles away from Earth (352 million to be exact) while moving at thousands of miles per hour and have it work flawlessly, and aren’t awed and impressed, then well you should probably check your pulse.

The Mars Science Laboratory’s mission is to investigate the interior of the Gale Crater for signs of microbial life. Top left: A profile of Curiosity’s landing site, Gale Crater. Top Right: A simulation of Curiosity’s proposed mission. Bottom: A map showing the distribution of NASA’s missions to the Martian surface. Credit: BBC News

In addition to being the largest rover we’ve ever sent to another world, twice as long (about 10 feet)  and five times as heavy as NASA’s twin Mars Exploration RoversSpirit and Opportunity, launched in 2003, Curiosity also has new equipment that allows it to gather samples of rocks and soil, process them, and then distribute them to various scientific instruments it carries for analysis; that internal instrument suite includes a gas chromatograph, a mass spectrometer, and a tunable laser spectrometer with combined capabilities to identify a wide range of organic (carbon-containing) compounds and determine the ratios of different isotopes of key elements. There’s clearly a reason why the mission is called the Mars Science Laboratory.

This illustration from NASA shows the size and instrumentation of Curiosity that will help it to investigate the possibility of microbial life on Mars. (A) Six independent wheels allowing the rover to travel over the rocky Martian surface. (B) Equipped with 17 cameras, Curiosity will identify particular targets and then zap them with a  laser to probe their chemistry. (C) If the signal is significant, Curiosity will swing over instruments on its arm for close-up investigation. (D) Samples drilled from rock, or scooped from the soil, can be delivered to two hi-tech analysis labs inside the rover body. (E) The results are sent to Earth through antennas on the rover deck. Return commands tell the rover where it should drive next. Credit: BBC News

According to NASA, Curiosity carries with it “the most advanced payload of scientific gear ever used on Mars’ surface, a payload more than 10 times as massive as those of earlier Mars rovers.” All that gear will be important as Curiosity investigates its main science objective: whether or not there is evidence of microbial life (past or present) in Martian rocks. Although both Spirit and Opportunity listed the search for life as among their scientific goals, neither rover was really equipped to search for microbial life; the twin early generation rovers were more specifically looking for water or the evidence of past water on the Martian surface and then whether that water could sustain life. Curiosity, on the other hand, is specifically equipped to look for microbial life (or evidence of it) in the rocks and soil of the Red Planet. More than just the roving explorer that its forebears were, Curiosity is for all intents and purposes a laboratory on wheels.

This image of Curiosity descending to the Martian surface with its parachute was taken by the High-Resolution Imaging Science Experiment (HiRISE) camera on the Mars Reconnaissance Orbiter. The rover is descending toward the etched plains just north of the sand dunes that fringe Aeolis Mons. Credit: NASA

And it’s not just the instrumentation that Curiosity is equipped with that make NASA rover 2.0 better than previous generations, but the technology it used to get to the Martian surface is leaps and bounds ahead of how Spirit and Opportunity landed. If you watch this NASA movie that highlights the landing process for the Mars Exploration Rovers (which only had six minutes of terror), you’ll notice that most of the landing procedure seems similar to Curiosity’s. Extremely high-speed entry into the Martian atmosphere, heat shield, parachute, rocket thrusters, etc. Until you get to the last step, when Spirit and Opportunity wer basically dropped onto the Martian surface at nearly 60 mph, surrounded by huge air bags, and allowed to bounce three or four times until they settled. Compared to the fine precision placement of the Curiosity rover earlier this week, the previous rovers’ landings were downright barbaric, like trying to hunt a deer by throwing rocks.

This image, one of the first returned by Curiosity, shows the rover’s shadow on the Martian surface and one of the main targets of its mission, Aeolis Mons, on the distant horizon. Credit: CNN

Rather than violently smashing the $2.6 billion rover into the surface and hoping for the best, this descent involved a sky crane and the world’s largest supersonic parachute, which allowed the spacecraft carrying Curiosity to target the specific landing area that NASA scientists had meticulously chosen. That landing area is roughly 12 km (7.5 miles) from the foot of the Martian peak previously known as Mount Sharp. Aeolis Mons, as it’s now known, is the 18,000-foot (5,500-meter) peak at the center of Gale Crater, previously known as Mount Sharp. The stratified composition of the mountain could give scientists a layer-by-layer look at the history of the planet as Curiosity attempts its two-year mission to determine whether Mars ever had an environment capable of supporting life.

Possibly the biggest piece of the NASA Curiosity puzzle has been the enormous PR campaign that NASA has thrown behind the rover. Not only has the rover and it’s 7 Minute of Terror video been all over the internet, TV news, newspapers, and other media outlets, but NASA has even gone out of its way to get high-level stars in the fold. Last week they released this video (above) of William Shatner, most famously known as Capt. James Tiberius Kirk of Star Trek, narrating a preview of Curiosity’s “Grand Entrance” to Mars. There was also another video featuring narration by Wil Wheaton (Wesley Crusher from Star Trek: The Next Generation).

————————————————————

Related Posts:

Advertisements

7 Minutes of Terror…

Hello all! So I made it successfully back to NASA Goddard from Snowmass Village, Colorado. The conference went well, but as with all scientific conferences, it was quite daunting. However to help me recover, this weekend I visited the Smithsonian National Air and Space Museum’s Steven F. Udvar-Hazy Center to see the recently retired Space Shuttle Discovery. As I’ve chronicled in the past, Discovery is by far the most accomplished of the five Shuttles that have flown (of which only three survive)– an impressive resume that puts it in the upper echelon of American vessels right alongside the USS Enterprise (that’s the Navy aircraft carrier, not the fictional starship…). Seeing Discovery in person was extremely impressive. Being able to see the scorch marks from reentry on the underbelly of the nose and then realizing that each individual tile is labeled was very cool. Up close, the Shuttle looked much more like a patchwork of different components than the sleek space-faring plane that I’m used to seeing in photos. The size also caught me off guard. I’m not sure why, but I’ve always assumed that the Space Shuttle must comparable in size to a commercial airplane that most of us are used to, like a Boeing 747, but it’s not, it’s much smaller. I guess in a way it was both bigger and smaller than I expected…if that makes any sense. Below are some pictures of Discovery.

Moving on to other cool space things. Have you ever wondered what it would be like travelling to Mars? Well a new short video from the great folks at NASA Jet Propulsion Laboratory (JPL) out in Pasadena, CA shows how harrowing the journey might actually be. The team working on the new Mars rover, Curiosity (part of the Mars Science Laboratory mission) have released a new video, entitled 7 Minutes of Terror, detailing the rover’s planned 7-minute descent through the Martian atmosphere and onto the surface of the Red Planet. If you’ve ever doubted the ingenuity or ability of NASA scientists and engineers then you should definitely watch this short video (it’s much less than seven minutes long). The sheer magnitude of the problem that they are attempting to tackle is impressive enough (aka landing something the size of a couch on an object millions of miles away), let alone the fact that they are doing it without any communication with the spacecraft (the entire landing process will have been completed in the time it takes communication to reach Earth from Mars) and dealing with insanely sensitive and delicate instrumentation. It’s just a great look at how insanely talented and inspiring the folks at NASA are. Kudos to them.

Curiosity will be the third functioning NASA rover on Mars, joining its Mars Exploration Rover brethren Spirit and Opportunity who landed in 2004 (Opportunity is still functioning), and will specifically be investigating the habitability of Mars. Curiosity was specifically designed to study layers in Martian mountains that hold evidence about wet environments of the planet’s early existence and assess whether Mars ever had an environment able to support microbial life forms. The rover, launched on November 26, 2011, is scheduled to land on the Martian surface, near the base of a mountain inside Gale Crater, close to the Martian equator, early on August 6, 2012 (EDT) to begin its two-year prime mission.

NASA’s next Mars rover, Curiosity, on a test drive. Credit: NASA/JPL

————————————————————

Related Posts:

%d bloggers like this: